

Welcome to Python-OpenTree’s documentation.

Contents:

	python-opentree

	Installation
	From the PyPI repository

	From the GitHub repository

	To Run the example Jupyter notebooks

	Example scripts
	About

	Studies calls
	study_properties

	Find studies

	Find trees

	Get study

	Get tree

	Taxonomy
	TNRS

	Taxon information

	Taxon mrca

	Synthetic tree
	Synth mrca

	Synth subtree

	Synth induced subtree

	Synth node info

	Diagnosing subproblem solutions

	Tutorials and Interactive examples
	Example notebooks

	Workshop material
	Getting a tree for a list of species names

	Getting a tree for taxa found in GBIF

	API Documentation

Indices and tables

	Search Page

python-opentree

[image: PyPI version]
 [https://badge.fury.io/py/opentree][image: Build Status]
 [https://travis-ci.org/OpenTreeOfLife/python-opentree][image: Documentation]
 [https://opentree.readthedocs.io/en/latest/][image: codecov]
 [https://codecov.io/gh/OpenTreeOfLife/python-opentree][image: NSF-1759846]
 [https://nsf.gov/awardsearch/showAward?AWD_ID=1759846][image: NSF-1759838]
 [https://nsf.gov/awardsearch/showAward?AWD_ID=1759838]This package is a python library designed to make it easier to work with web services and
data resources associated with the Open Tree of Life [https://opentreeoflife.github.io]
project.
The git repo is at https://github.com/OpenTreeOfLife/python-opentree.

Please refer to this markdown document or opentree’s documentation website https://opentree.readthedocs.io/en/latest/install.html for more details on installation instructions, function usage, running tutorials, real life examples, and tools for developers.

If you have questions or comments, submit a GitHub issue or email ejmctavish ucmerced.edu.

For examples scripts see: https://opentree.readthedocs.io/en/latest/running_examples.html

For example Jupyter notebooks see: https://opentree.readthedocs.io/en/latest/notebooks.html

SSB 2020 workshop curriculum is posted at:
Open Tree workshop [https://opentreeoflife.github.io/SSBworkshop]
at the 2020 SSB Meeting [https://systbiol.github.io/ssb2020/] in Gainesville, FL.

If you use python-opentree, please cite McTavish et al. 2021, Systematic Biology [https://academic.oup.com/sysbio/article/70/6/1295/6273200]

Installation

From the PyPI repository

If you don’t need the development version of the python-opentree package you can install the version available from the Python Package Index (PyPI) [https://pypi.org/project/opentree/] using pip:

pip install opentree

From the GitHub repository

If you want/need the latest version of python-opentree or if you are a developer who wants to install multiple times, you probably want to clone the code from its GitHub repository [https://github.com/OpenTreeOfLife/python-opentree], and install it locally in a virtual environment.

To do this, first git clone the code from GitHub to your machine:

git clone https://github.com/OpenTreeOfLife/python-opentree.git

Change to its directory with cd:

cd python-opentree

Create a Python 3 virtual environment named env (you only need to ever run this once):

python3 -m venv env

Activate the virtual environment named env (you will want to do this each time you are using the package):

source env/bin/activate

Install the package requirements:

pip install -r requirements.txt

Install the python-opentree package locally:

pip install -e .

You can deactivate the virtual environment by running:

deactivate

To Run the example Jupyter notebooks

If you plan to run the python-opentree example Jupyter notebooks [https://github.com/OpenTreeOfLife/python-opentree/tree/main/docs/notebooks], you will also need to install Jupyter [https://jupyter.org/] within a Python virtual environment.

First, create a Python virtual environment and activate it, as shown above.

Now, install a Jupyter [https://jupyter.org/] kernel:

pip install ipykernel
python -m ipykernel install --user --name=opentree

Install Jupyter [https://jupyter.org/] from PyPI [https://pypi.org/jupyter/] using pip:

pip install jupyter

Finally, open the python-opentree example Jupyter notebooks [https://github.com/OpenTreeOfLife/python-opentree/tree/main/docs/notebooks] with:

jupyter notebook docs/notebooks/

You can then install python-opentree within the virtual environment from PyPI or GitHub, following the instructions above.

Example scripts

opentree comes packaged with a set of example scripts, wrapping common function calls.

These wrap most of the the API calls described in https://github.com/OpenTreeOfLife/germinator/wiki/Open-Tree-of-Life-Web-APIs,
and current API documentation is stored there.

About

An about call returns the current version of the OpenTree synthetic tree and taxonomy:

python examples/about.py

Response:

taxonomy_about
{
 "author": "open tree of life project",
 "name": "ott",
 "source": "ott3.2draft9",
 "version": "3.2",
 "weburl": "https://tree.opentreeoflife.org/about/taxonomy-version/ott3.2"
}

synth_tree_about
{
 "date_created": "2019-12-23 11:41:23",
 "filtered_flags": [
 "major_rank_conflict",
 "major_rank_conflict_inherited",
 "environmental",
 "viral",
 "barren",
 "not_otu",
 "hidden",
 "was_container",
 "inconsistent",
 "hybrid",
 "merged"
],
 "num_source_studies": 1162,
 "num_source_trees": 1216,
 "root": {
 "node_id": "ott93302",
 "num_tips": 2391916,
 "taxon": {
 "name": "cellular organisms",
 "ott_id": 93302,
 "rank": "no rank",
 "tax_sources": [
 "ncbi:131567"
],
 "unique_name": "cellular organisms"
 }
 },
 "synth_id": "opentree12.3",
 "taxonomy_version": "3.2draft9"
}

Studies calls

study_properties

Get all searchable properties for trees and studies:

python examples/study_properties.py

Find studies

Search studies by property.
Property can mb any of the above listed ‘study properties’, but the most common study search properties are:

“ot:studyPublicationReference”,
“ot:focalCladeOTTTaxonName”,
“ot:curatorName”,

The default response just returns the study ID, adding the –verbose flag retuns the full publication references.

To find studies published in the journal Copeia:

python examples/find_studies.py --property "ot:studyPublicationReference" Copeia --verbose

	Property can be any of the above listed ‘study properties’, but the most common study search properties are:

	“ot:studyPublicationReference”,
“ot:focalCladeOTTTaxonName”,
“ot:curatorName”,

Response:

"matched_studies": [
{
 "ot:curatorName": [
 "Matt Girard"
],
 "ot:dataDeposit": "",
 "ot:focalClade": 814725,
 "ot:focalCladeOTTTaxonName": "Etheostoma",
 "ot:studyId": "ot_1930",
 "ot:studyPublication": "http://dx.doi.org/10.1643/ci-18-054",
 "ot:studyPublicationReference": "Matthews, William J., and Thomas F. Turner. \u201cRedescription and Recognition of Etheostoma Cyanorum from Blue River, Oklahoma.\u201d Copeia 107, no. 2 (April 11, 2019): 208. doi:10.1643/ci-18-054.",
 "ot:studyYear": 2019,
 "ot:tag": []
},
... cut off for length

Find trees

Search tress by property
Property can be any of the above listed ‘tree properties’, but the most common tree search properties are:

“ot:branchLengthTimeUnit”,
“ot:inGroupClade”,
“ot:ottTaxonName”,
“ot:branchLengthDescription”,
“ntips”,
“ot:ottId”,
“ot:branchLengthMode”,

To find trees that contain lemurs:

python examples/find_trees.py --property ot:ottTaxonName Lemur

or to avoid spelling or typographical errors, you can use the ott id for lemurs, 913932 https://tree.opentreeoflife.org/taxonomy/browse?id=913932:

python examples/find_trees.py --property ot:ottId 913932

Get study

Get the full study as nexson from study id:

python examples/get_study.py pg_2067

Get tree

Get a tree from a study in Newick or Nexus format

For example, to get one of the lemur trees found above:

python examples/get_tree.py pg_2067 tree4259 --format newick

Taxonomy

TNRS

To get the taxonomic identifiers for a name:

python examples/tnrs_match_names.py Lemur

if you think you may have typos, add –do-approximate-matching:

python examples/tnrs_match_names.py Lemun --do-approximate-matching

To combine a genus and species, use quotation marks:

python examples/tnrs_match_names.py "Bos taurus"

Approximate name matching can be sped up by restricting the ‘context’ for the searches
You can find out the possible contexts using:

python examples/tnrs_contexts.py

and then applying them:

python examples/tnrs_match_names.py Lemun --do-approximate-matching --context Mammals

Taxon information

To get more information for taxon which you have the ott id for:

python examples/taxon_info.py --ott-id 913932

Or the taxonomic subtree descending from a node:

python examples/taxon_info.py --ott-id 913932

Taxon mrca

To get the most recent common ancestor in the taxonomy for multiple taxa e.g. humans (ott:770309) and lemurs (ott:913932)(may differ from synth tree mrca):

python examples/taxon_mrca.py --ott-ids 770309,913932

You can pass in the ottids with or without ‘ott’ e.g. ‘ott770309,ott913932’, but there cannot be a space between taxa.

Synthetic tree

To get the most recent common ancestor in the synthetic tree for multiple taxa e.g. humans (ott:770309) and lemurs (ott:913932):

Synth mrca

python examples/synth_mrca.py –ott-ids 770309,913932

	Response::

	
{

	“mrca”: {

	“node_id”: “mrcaott786ott3428”,
“num_tips”: 743,
“partial_path_of”: {

“ot_1366@Tr98763”: “Tn14487470”,
“ot_722@tree1”: “node47”,
“pg_1428@tree2855”: “node610302”,
“pg_2812@tree6545”: “node1135880”

},
“supported_by”: {

“pg_2647@tree6169”: “node1053665”,
“pg_2741@tree6645”: “node1159651”

},
“terminal”: {

“ot_508@tree2”: “ott83926”,
“pg_2822@tree6569”: “ott83926”

}

},
“nearest_taxon”: {

“name”: “Primates”,
“ott_id”: 913935,
“rank”: “order”,
“tax_sources”: [

“ncbi:9443”,
“gbif:798”,
“irmng:11338”

],
“unique_name”: “Primates”

},
“source_id_map”: {

	“ot_1366@Tr98763”: {

	“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “ot_1366”,
“tree_id”: “Tr98763”

},
“ot_508@tree2”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “ot_508”,
“tree_id”: “tree2”

},
“ot_722@tree1”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “ot_722”,
“tree_id”: “tree1”

},
“pg_1428@tree2855”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_1428”,
“tree_id”: “tree2855”

},
“pg_2647@tree6169”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_2647”,
“tree_id”: “tree6169”

},
“pg_2741@tree6645”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_2741”,
“tree_id”: “tree6645”

},
“pg_2812@tree6545”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_2812”,
“tree_id”: “tree6545”

},
“pg_2822@tree6569”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_2822”,
“tree_id”: “tree6569”

}

},
“synth_id”: “opentree12.3”
}

Synth subtree

To get the full subtree descending from a node in the the synthetic tree:

python examples/synth_subtree.py --ott-id 913932 --outfile tmp.txt

By default this will write the tree to screen as an ascii plot, and write the newick to the file location
listed in outfile:

python examples/synth_subtree.py --ott-id 913932 --outfile tmp.txt

You can specify the label format out the output tree using –label-format with options [id, name, name_and_id]:

python examples/synth_subtree.py --ott-id 913932 --label-format name --outfile tmp.txt

Synth induced subtree

To get the relationships among cows (Bos taurus ott490099), camels (Camelus dromedarius ott510752), and whales (Orcinus orca ott124215)
By default this will write the tree to screen as an ascii plot, and write the newick to the file location
listed in outfile:

python examples/synth_induced_subtree.py --ott-ids ott490099,ott510752,ott124215 --outfile tmp.nwk

Synth node info

All nodes in the syntehtic tree are supported by published studies, taxonomy, or both.

To get more information the studies that are resolving a node in the syntehtic tree,
you can get node information:

python examples/synth_node_info.py --node-id mrcaott354607ott374748

	Response::

	
{

“node_id”: “mrcaott354607ott374748”,
“num_tips”: 21,
“query”: “mrcaott354607ott374748”,
“resolves”: {

“pg_2812@tree6545”: “node1135857”

},
“source_id_map”: {

	“ot_1344@Tr105486”: {

	“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “ot_1344”,
“tree_id”: “Tr105486”

},
“pg_1217@tree2455”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_1217”,
“tree_id”: “tree2455”

},
“pg_1428@tree2855”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_1428”,
“tree_id”: “tree2855”

},
“pg_2647@tree6169”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_2647”,
“tree_id”: “tree6169”

},
“pg_2812@tree6545”: {

“git_sha”: “3008105691283414a18a6c8a728263b2aa8e7960”,
“study_id”: “pg_2812”,
“tree_id”: “tree6545”

}

},
“supported_by”: {

“ot_1344@Tr105486”: “Tn16531763”

},
“synth_id”: “opentree12.3”,
“terminal”: {

“pg_1217@tree2455”: “node566205”,
“pg_1428@tree2855”: “node610191”,
“pg_2647@tree6169”: “node1053583”

Diagnosing subproblem solutions

To dig deeper into how different trees included in synthesis support or conflict with nodes in the inferred synthetic tree,
you can examine what trees support and conflict with a given node’s resolution, and experiment with alternate tree rankings.

For example, Drosophila (ott34907) is not found in the synthetic tree. Why not:??

python examples/diagnose_solution_for –ott-id 34907

You can then interactively view the subproblems. The subproblem synthesis algorithm described in depth in Redelings and Holder 2017 (https://peerj.com/articles/3058/).

Tutorials and Interactive examples

We have developed Jupypter notebooks demonstrating how to use python-opentree
interactively as part of a python workflow.

Example notebooks

To run these notebooks follow the installation instuctions in https://opentree.readthedocs.io/en/latest/readme.html#installation.

And start the notebook server by running:

jupyter notebook docs/notebooks/

For more information on Jupyter notebooks, see [https://jupyter.org/]

Workshop material

All the notes from a workshop presented in winter 2020 are in http://opentreeoflife.github.io/SSBworkshop/,
git repo with code and data at https://github.com/snacktavish/OpenTree_SSB2020.

Getting a tree for a list of species names

https://github.com/snacktavish/OpenTree_SSB2020/blob/master/notebooks/DEMO_OpenTree.ipynb

Getting a tree for taxa found in GBIF

https://github.com/snacktavish/OpenTree_SSB2020/blob/master/notebooks/DEMO_GBIF_OpenTree.ipynb

API Documentation

OT object. High level wrapper for OpenTree calls

	
class opentree.ot_object.FilesServerWrapper(api_endpoint='files', run_mode=<WebServiceRunMode.RUN: 1>)

	This class provides a mid-level wrapper for interaction with OT web services and data.

	
class opentree.ot_object.OpenTree(api_endpoint='production', run_mode=<WebServiceRunMode.RUN: 1>)

	This class provides a high-level wrapper for interaction with OT web services and data.
The method names are intended to be clear to a wide variety of users, rather than
necessarily matching the API calls directly.

	
about()

	Get information about the Open Tree of Life taxonomy and the synthetic tree.

	
conflict_info(study_id, tree_id, compare_to='synth')

	Get node status data from any tree in the Open Tree of Life Phylesystem.

	study_idsingle character value

	The study id from Open Tree of Life.

	tree_idsingle character value

	The tree id of a tree within the study id provided.

	compare_toa single character value

	Usually, you want this to be ‘synth’, to compare to the synthetic tree.
Alternatively, you can compare your tree to any other tree in phylesystem.

	
conflict_str(tree_str, compare_to='synth')

	Get node status data from a newick string tree with ott_ids as labels, following the rough
format:
“((‘_nd1_ott770315’,’newick_nd2_ott417950’)’_nd3_’,’_nd4_ott158484’)’_nd5’;”.

tree_str: a tree in ‘conflict formatted’ newick string
compare_to : a single character value

Usually, you want this to be ‘synth’, to compare to the synthetic tree.
Alternatively, you can compare your tree to any other tree in phylesystem.

	
find_studies(value, search_property, exact=False, verbose=False)

	Get study ids that match a certain value of a given search property.

	valuesingle character value

	The study id from Open Tree of Life.

	search_propertysingle character value

	Any value from studies_properties.

exact : boolean

verbose : boolean

	
find_trees(value, search_property, exact=False, verbose=False)

	Get trees that match a certain value of a given search property.

	valuesingle character value

	The study id from Open Tree of Life.

	search_propertysingle character value

	Any value from studies_properties.

exact : boolean

verbose : boolean

	
get_citations(studies)

	Returns study citations from a list of study or tree ids

	
get_matchdict_from_taxlist(list_of_taxa)

	Input: a list of taxon names
Returns: matches - a dictionary of name:ott_id
and failed - a set of the names that were not found.

	
get_ottid_from_gbifid(gbif_id)

	Returns an ott id for a gbif id
ott_id is set to ‘None’ if the gbif id is not found in the Open Tree Taxanomy

	
get_ottid_from_name(spp_name)

	Returns an ott id for a string - requires exact match.
ott_id is set to ‘None’ if the name is not found in the Open Tree Txanomy

	
get_otus(study_id)

	Get OTUs from a study in the Open Tree of Life Phylesystem.

	study_idsingle character value

	The study id from Open Tree of Life.

	
get_study(study_id)

	Get a study and its associated metadata.

	study_idsingle character value

	The study id from Open Tree of Life.

	
get_tree(study_id, tree_id, tree_format='nexson', label_format='ot:originallabel', demand_success=False)

	Get a source tree from phylesystem and its associated metadata.

	study_idsingle character value

	The study id from Open Tree of Life.

	tree_idsingle character value

	The tree id of a tree within the study id provided.

	tree_formatsingle character value

	Must be one of “newick”, “nexson”, “nexus”, or “object”
If tree format is newick or nexus, returns tree as string in that format.
If “nexson”, returns semi-useless tree nexson w/o OTUS.

	label_formatsingle character value

	Must be one of “ot:originallabel”, “ot:ottid”, or “ot:otttaxonname”.
“ot:originallabel” returns the tree with tip labels as it was originally

submitted to phylesystem by a curator.

	“ot:ottid” returns a tree with tip labels corresponding to the matching

	ott id.

	“ot:otttaxonname” returns a tree with tip labels corresponding to the

	matching ott taxon name.

	demand_successboolean

	Whether to return an error or return a somewhat failed output silently.

	
studies_properties()

	Get properties that can be used to search across studies and trees in phylesystem.

	
synth_induced_tree(node_ids=None, ott_ids=None, label_format='name_and_id', ignore_unknown_ids=False)

	Get an induced subtree

	
synth_mrca(node_ids=None, ott_ids=None, ignore_unknown_ids=True)

	Get the most recent common ancestor of a group of taxa on the synthetic
Open Tree of Life

	
synth_node_info(node_ids=None, node_id=None, ott_id=None, include_lineage=False)

	Get information of a node

	
synth_subtree(node_id=None, ott_id=None, tree_format='newick', label_format='name_and_id', height_limit=None)

	Get a subtree

	
taxon_info(ott_id=None, source_id=None, include_lineage=False, include_children=False, include_terminal_descendants=False)

	Get taxonomic information for a given taxon in the Open Tree taxonomy.

	ott_idsingle character value

	The OTT id of a taxon.

source_id : maybe single character value

include_lineage : boolean

include_children : boolean

include_terminal_descendant : boolean

	
taxon_mrca(ott_ids=None)

	
	Get the node corresponding to the most recent commom ancestor (mrca) of

	a taxon in the synthetic Open Tree of Life tree.

	Notes from Luna:

	Does it work with just one id?
Since it is not always a taxon mrca, should it be called get_mrca?

ott_ids : maybe single character value

	
taxon_subtree(ott_id=None, label_format='name_and_id')

	Get a subtree of a particular taxon

	
tnrs_autocomplete(name, context_name=None, include_suppressed=False)

	Taxonomic name resolution service autocomplete

	
tnrs_contexts()

	Get a list of taxonomic contexts that can be used to constraint a TNRS match.

	
tnrs_infer_context(names)

	Infer taxonomic context for names via a TNRS (Taxonomic Name Resolution Service) match.

	
tnrs_match(names, context_name=None, do_approximate_matching=False, include_suppressed=False)

	Match taxon names to Open Tree Taxonomy using TNRS (Taxonomic Name Resolution
Service).

	
class opentree.object_conversion.DendropyConvert

	Class to convert newicks to dendropy objects

	
class opentree.ot_command_line_tool.OTCommandLineTool(usage, name=None, common_args=None)

	Helper class for writing a script that uses a common set of Open Tree command line
options.

	
parse_cli(arg_list=None)

	Parses arg_list or sys.argv (if None), handles basic options, returns OpenTree and args.

May call sys.exit - if the user requested an option like –version to display info and exit.

	Returns an OpenTree instance configured with the specified api_endpoint and the args

	object returned by the argparse object’s parse_args method

	
class opentree.ot_ws_wrapper.OTWebServiceWrapper(api_endpoint, run_mode=<WebServiceRunMode.RUN: 1>)

	This class provides a wrapper to the Open Tree of Life web service methods.
Actual HTTP calls are handled by methods implemented in the base class for clarity of this code.
API method calls will be mappable to methods in this class. The methods implemented here do argument checking
and conversion of the returned JSON to more usable objects.

Miscellaneous light-weight functions for common operations when working with Open Tree data

	
opentree.util.get_suppressed_taxon_flag_expl_url()

	Returns the current URL describing taxon flags that lead to suppression

	
opentree.util.ott_str_as_int(o)

	Returns the OTT Id o as an integer if o is an integer or a string starting with ott (case-insensitive).

Raises a ValueError if the string does not match ^(OTT)?[0-9]+$

	
opentree.util.write_node_info_links_to_input_trees(blob, out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Writes a summary of the support/conflict info from a ToL/node_info call response blob to stream out

	
exception opentree.ws_wrapper.OTClientError(message, call_record=None)

	This type of error is raised when the calling code does not make a legitimate request
based on the Open Tree of Life API’s (see https://opentreeoflife.github.io/develop/api).

	
exception opentree.ws_wrapper.OTWebServicesError(message, call_record=None)

	This type of error is raised when a web-service call fails for a reason that is
impossible or difficult to diagnose. The string representation of the error should contain
some helpful information.

	
class opentree.ws_wrapper.WebServiceCallRecord(service_wrapper, url, http_method, headers, data)

	Wrapper around a web-service call, returned by WebServiceWrapper methods.

	The main client methods to call are:

	
	__bool__ (check if status code was 200)

	__str__ (explanation of the call status

	write_response (writes call explanation and response, if there was one).

	The most commonly used properties:

	
	url: string

	response: a requests response object

	status_codeL: None or the HTTP status code as an integer

	response_dict: None, decoding of a JSON response or {‘content’ : raw_content} (for non-JSON methods)

	If the API call returns some encoding of a tree, then the tree property of the WebServiceCallRecord

	can be used to decode the response.

	
curl_call

	Returns a string that is a curl representation of the call

	
class opentree.ws_wrapper.WebServiceRunMode

	An enumeration.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 opentree	

 	
 	
 opentree.object_conversion	

 	
 	
 opentree.ot_command_line_tool	

 	
 	
 opentree.ot_object	

 	
 	
 opentree.ot_ws_wrapper	

 	
 	
 opentree.util	

 	
 	
 opentree.ws_wrapper	

Index

 A
 | C
 | D
 | F
 | G
 | O
 | P
 | S
 | T
 | W

A

 	
 	about() (opentree.ot_object.OpenTree method)

C

 	
 	conflict_info() (opentree.ot_object.OpenTree method)

 	
 	conflict_str() (opentree.ot_object.OpenTree method)

 	curl_call (opentree.ws_wrapper.WebServiceCallRecord attribute)

D

 	
 	DendropyConvert (class in opentree.object_conversion)

F

 	
 	FilesServerWrapper (class in opentree.ot_object)

 	
 	find_studies() (opentree.ot_object.OpenTree method)

 	find_trees() (opentree.ot_object.OpenTree method)

G

 	
 	get_citations() (opentree.ot_object.OpenTree method)

 	get_matchdict_from_taxlist() (opentree.ot_object.OpenTree method)

 	get_ottid_from_gbifid() (opentree.ot_object.OpenTree method)

 	get_ottid_from_name() (opentree.ot_object.OpenTree method)

 	
 	get_otus() (opentree.ot_object.OpenTree method)

 	get_study() (opentree.ot_object.OpenTree method)

 	get_suppressed_taxon_flag_expl_url() (in module opentree.util)

 	get_tree() (opentree.ot_object.OpenTree method)

O

 	
 	OpenTree (class in opentree.ot_object)

 	opentree (module)

 	opentree.object_conversion (module)

 	opentree.ot_command_line_tool (module)

 	opentree.ot_object (module)

 	opentree.ot_ws_wrapper (module)

 	
 	opentree.util (module)

 	opentree.ws_wrapper (module)

 	OTClientError

 	OTCommandLineTool (class in opentree.ot_command_line_tool)

 	ott_str_as_int() (in module opentree.util)

 	OTWebServicesError

 	OTWebServiceWrapper (class in opentree.ot_ws_wrapper)

P

 	
 	parse_cli() (opentree.ot_command_line_tool.OTCommandLineTool method)

S

 	
 	studies_properties() (opentree.ot_object.OpenTree method)

 	synth_induced_tree() (opentree.ot_object.OpenTree method)

 	
 	synth_mrca() (opentree.ot_object.OpenTree method)

 	synth_node_info() (opentree.ot_object.OpenTree method)

 	synth_subtree() (opentree.ot_object.OpenTree method)

T

 	
 	taxon_info() (opentree.ot_object.OpenTree method)

 	taxon_mrca() (opentree.ot_object.OpenTree method)

 	taxon_subtree() (opentree.ot_object.OpenTree method)

 	
 	tnrs_autocomplete() (opentree.ot_object.OpenTree method)

 	tnrs_contexts() (opentree.ot_object.OpenTree method)

 	tnrs_infer_context() (opentree.ot_object.OpenTree method)

 	tnrs_match() (opentree.ot_object.OpenTree method)

W

 	
 	WebServiceCallRecord (class in opentree.ws_wrapper)

 	
 	WebServiceRunMode (class in opentree.ws_wrapper)

 	write_node_info_links_to_input_trees() (in module opentree.util)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python-OpenTree’s documentation.

 		
 python-opentree

 		
 Installation

 		
 From the PyPI repository

 		
 From the GitHub repository

 		
 To Run the example Jupyter notebooks

 		
 Example scripts

 		
 About

 		
 Studies calls

 		
 study_properties

 		
 Find studies

 		
 Find trees

 		
 Get study

 		
 Get tree

 		
 Taxonomy

 		
 TNRS

 		
 Taxon information

 		
 Taxon mrca

 		
 Synthetic tree

 		
 Synth mrca

 		
 Synth subtree

 		
 Synth induced subtree

 		
 Synth node info

 		
 Diagnosing subproblem solutions

 		
 Tutorials and Interactive examples

 		
 Example notebooks

 		
 Workshop material

 		
 Getting a tree for a list of species names

 		
 Getting a tree for taxa found in GBIF

 		
 API Documentation

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

